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Atmospheric Winds: Systems Approach

• Emerging consensus that a systems approach is needed for 
space based observation of atmospheric winds

• Lidar: high accuracy, limited sampling in space and time

• AMVs (or other approaches): lower accuracy, broader coverage, 
possibility of relatively rapid revisit

• Key questions:
• What are the relative strengths / drawbacks of AMVs as a component 

of a global 3D winds observing system?

• What is the most effective synergy among various measurement 
techniques and sampling strategies?
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Atmospheric Motion Vectors

• Use of image processing (and other) techniques to 
track atmospheric motion from sequences of images

• Heritage in tracking clouds and water vapor

• Known to be uncertain, and to contain ambiguities 
(more on this in a minute)

• Motivation to systematically explore the potential 
efficacy of AMVs, and quantify their uncertainties

• More effective use in DA/OSSEs

• Evaluation of various AMV measurement concepts

• Potential synergy with other wind measurements
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AMV Retrieval Uncertainty Analysis
(“Pre-OSSE” - Atlas and Emmitt)

• Produce a high resolution simulation of a representative 
case (nature run): known water vapor and wind – “truth”

• Retrieve atmospheric motion vectors from this nature run
• Vary assumptions used in the tracking methodology

• Modify the instrument sampling properties 
(spatial and temporal)

• Compare retrieved with true winds
• Quantify uncertainties by comparing AMVs to the “true” winds

• Compute RMSE and the state dependence of errors – where/when 
are AMVs expected to perform reasonably well / poorly?

• Explore the effect of coarse spatial (horizontal and/or vertical) 
resolution

• (Ultimately) use functional uncertainties in forecast OSSEs through 
collaboration with GMAO and NOAA QOSAP
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Domain configuration for WRF
Nature Run 21-25 Nov 2006
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Initial Results: 5-Minute dt, 1.33 km dx,dy

• Tracking algorithm recovers the approximate distribution of winds in the cyclone

• There are obvious gaps (low water vapor content)

• Explore sensitivity to tracking algorithm settings, time interval, and field of view
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Sensitivity to Sampling Interval

Retrieval coverage sensitivity to sampling intervals
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• No cloud mask, vapor and winds are noise-free and at model resolution 

• Brighter colors = larger retrieval errors

• Gray areas indicate regions without retrieved wind (algorithm failure)

• Trade between coverage (rapid revisit) and accuracy (longer revisit intervals)



Sensitivity to Field of View

07 February 2018 D. J. Posselt - Derek.Posselt@jpl.nasa.gov 7

• Tracking over 
smaller FOV:

• Higher 
accuracy

• Smaller 
coverage

15 km x 15 km FOV

15 km x 15 km FOV

30 km x 30 km FOV

30 km x 30 km FOV

60 km x 60 km FOV

60 km x 60 km FOV



• Retrieval errors are generally within ±2 m/s.

• Large errors occur when moisture content is low or wind 
direction is perpendicular to moisture gradient.

Y-axis: Difference between retrieved AMV wind speed and nature run.

State Dependent AMV Errors
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• Operational GOES-R AMV algorithm has more stringent quality control, 
resulting in smaller RMS error but less coverage of AMV winds.

• U. Wisconsin 
algorithm: 
operational GOES-R 
AMV feature-
tracking algorithm

• JPL algorithm: 
simplified MISR 
CMV feature-
tracking algorithm

No
retrieval

Comparing Feature-Tracking Algorithms
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Wind Retrieval Uncertainty: Outcomes

• Quantified accuracy of AMVs: most vectors have 
uncertainties < 2 m/s, however…

• State dependence: error is large where 
• Water vapor content is small

• Wind vectors are oriented along vapor contours

• Algorithm sensitivity: trade-off between accuracy 
and coverage

• Rapid sampling: large coverage, low accuracy

• Large FOV: smaller coverage, higher accuracy
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AMV Retrieval Uncertainty: Next Steps

• Caveats:
• Did not account for clouds/precipitation

• Tracked full resolution water vapor fields

• Used a relatively simple feature tracking algorithm

• Did not apply any image enhancement

• Next steps:
• Mask clouds and/or precipitation – assess yield and uncertainty

• Smooth fields consistent with IR and MW sounders

• Employ more sophisticated image tracking 
techniques (e.g., optical flow)

• Extend analysis to other regions and times

• Use state-dependent error characteristics in forecast OSSEs

• Utilize machine learning to estimate uncertainties from static fields – expand utility of error 
analysis to a much larger suite of nature runs
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